Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

نویسندگان

  • Amol Chaudhari
  • Annabel Braem
  • Jozef Vleugels
  • Johan A. Martens
  • Ignace Naert
  • Marcio Vivan Cardoso
  • Joke Duyck
چکیده

BACKGROUND Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. METHODOLOGY Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO(2)); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 µm, BAF-500), in the implant vicinity (100 µm, BAF-100) and further away (100-500 µm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. PRINCIPAL FINDINGS After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p>0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-µm compared to the 400-µm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. CONCLUSIONS BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn't stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn't stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties.

Nanostructured porous silica coatings were synthesized on titanium by the combined sol-gel and evaporation-induced self-assembly process. The silica-coating structures were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen sorptometry. The effect of the nanoporous surface on apatite formation in simulated body fluid, protein adsorpt...

متن کامل

Bone Tissue Response to Plasma Sprayed Hydroxyapatite Coatings: An In Vivo Study on Rabbit Femoral Condyles

     In this study, hydroxyapatite was coated on titanium substrates by plasma spraying process. A well-known porous and lamellar microstructure was found in the lateral a...

متن کامل

Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS), bone morphogenetic protein-2 immobilized on AMS (AMS + BMP), bio-active glass (BAG) and two titanium c...

متن کامل

In Vivo Evaluation of Functionalized Biomimetic Hydroxyapatite for Local Delivery of Active Agents

This study was carried out to investigate the biological response in vivo to biomimetic hydroxyapatite implant coatings functionalized with bisphosphonates and bone morphogenetic proteins. The functionalization was carried out by a simple soaking procedure in the operating room immediately prior to surgery. Cylindrical titanium samples with and without coatings were implanted in the distal femo...

متن کامل

Porous Tantalum Coatings Prepared by Vacuum Plasma Spraying Enhance BMSCs Osteogenic Differentiation and Bone Regeneration In Vitro and In Vivo

Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011